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Abstract. Volatile chemical products (VCPs) are commonly-used consumer and industrial items that are an important source 

of anthropogenic emissions. Organic compounds from VCPs evaporate on atmospherically relevant time scales and include 15 

many species that are secondary organic aerosol (SOA) precursors. However, the chemistry leading to SOA, particularly that 

of intermediate volatility organic compounds (IVOCs), has not been fully represented in regional-scale models such as the 

Community Multiscale Air Quality (CMAQ) model, which tend to underpredict SOA concentrations in urban areas. Here we 

develop a model to represent SOA formation from VCP emissions. The model incorporates a new VCP emissions inventory 

and employs three new classes of emissions: siloxanes, oxygenated IVOCs, and nonoxygenated IVOCs. VCPs are estimated 20 

to produce 1.67 g m-3 of noontime SOA, doubling the current model predictions and reducing the SOA mass concentration 

bias from -75% to -58% when compared to observations in Los Angeles in 2010. While oxygenated and nonoxygenated 

intermediate volatility VCP species are emitted in similar quantities, SOA formation is dominated by the nonoxygenated 

IVOCs. Formaldehyde and SOA show similar relationships to temperature and bias signatures indicating common sources 

and/or chemistry. This work suggests that VCPs contribute up to half of anthropogenic SOA in Los Angeles and models 25 

must better represent SOA precursors from VCPs to predict the urban enhancement of SOA. 

 

 

1 Introduction 

 30 

Organic aerosol (OA) is a major component of fine particulate matter (PM2.5) in urban areas throughout the world (Zhang et 

al., 2007). PM2.5 influences human health (Lim et al., 2012), climate (Intergovernmental Panel on Climate Change, 2014), 

and visibility (Hyslop, 2009), so understanding OA composition is an important step in mitigating the adverse effects of 

PM2.5. Secondary organic aerosol (SOA) is often the dominant component of OA (Jimenez et al., 2009) and is formed when 

gas-phase volatile organic compounds (VOCs) react with atmospheric oxidants to form products that condense into the 35 

aerosol phase, where they can undergo further reaction. SOA is formed via thousands of atmospheric reactions (Goldstein & 

Galbally, 2007), so understanding its sources remains a challenge. 

 

Volatile chemical products (VCPs) are an important source of organic emissions that lead to SOA formation (McDonald et 

al., 2018; Qin et al., 2021). As vehicle exhaust becomes cleaner and mobile source emissions decline, the relative importance 40 

of VCP emissions increases (Khare & Gentner, 2018). Previous work suggests that during the 2010 California Nexus of Air 

Quality and Climate Change (CalNex) campaign in Southern California (Ryerson et al., 2013), VCPs contributed 

approximately 1.1 g m-3, or 41%, of observed SOA above background levels in the Los Angeles Basin (Qin et al., 2021). 

 

Modeling the formation of SOA in three-dimensional (3D) chemical transport models (CTMs) is challenging due to the 45 

complexity of VOC chemistry and computational constraints of regional-scale modeling. Models have tended to 

underpredict SOA mass in urban locations for a variety of reasons. For one, the SOA formation potential of intermediate 
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volatility organic compounds (IVOCs) and semivolatile organic compounds (SVOCs) – or S/IVOCs – is not well 

constrained. Observations made during the CalNex campaign demonstrate that S/IVOCs are important sources of SOA, 

making up only 10% of total gas-phase organic compound concentrations (Zhao et al., 2014) while contributing up to 80% 50 

of above-background SOA mass (Hayes et al., 2015). Although it is often impossible to identify all individual species 

contributing to ambient S/IVOCs, these compounds may be classified based on their properties (e.g. volatility). Volatility 

basis set (VBS) models (Donahue et al., 2011) are often used to represent S/IVOC chemistry and partitioning, and have 

improved model estimates of SOA (Woody et al., 2016; Hayes et al., 2015; Robinson et al., 2007). Murphy et al. (2017) 

integrated a VBS model into the Community Multiscale Air Quality (CMAQ) model version 5.2 to represent the 55 

multigenerational aging of semivolatile primary organic aerosol (POA) leading to the production of SOA. Other studies have 

parameterized VBS models to represent S/IVOCs from mobile emissions (Lu et al., 2020; Jathar et al., 2017), but none have 

parameterized SOA formation from VCP S/IVOCs emissions. Additionally, the emissions of S/IVOCs are not well 

constrained and are often not included in detailed emissions inventories (Zhao et al., 2015). However even when S/IVOCs 

are included in emissions inventories, they are often assigned to nonreactive or nonvolatile model surrogates that do not 60 

participate in model chemistry (T. Shah et al., 2020). Improving the representation of SOA chemistry in CMAQ will allow 

for more accurate exposure estimates in health studies and source apportionment for air quality management decisions. 

 

Another source of error in CTMs is the lack of representation of oxygenated SOA precursors. Historically, mechanism 

development has focused on the oxidation chemistry of species emitted primarily from vehicles (e.g. BTEX: benzene, 65 

toluene, ethylbenzene, and xylene) or biogenic sources (e.g. isoprene, monoterpenes). While VCPs do emit some of these 

species, they also emit many oxygenated compounds (Seltzer et al., 2021; McDonald et al., 2018). The implications of a few 

important oxygenated precursors on air quality have recently been quantified (e.g. Janechek et al., 2017; Charan et al., 2020; 

L. Li & Cocker, 2018; W. Li et al., 2018), but many oxygenated precursors have not been studied in a laboratory setting. For 

the few oxygenated VCPs that have been studied in laboratory chambers, SOA yields were reported under unrealistic 70 

atmospheric conditions, e.g. high OH and aerosol seed concentrations. So, the SOA yields of these compounds have 

primarily been estimated using models such as the Statistical Oxidation Model (SOM; Cappa & Wilson, 2012) or VBS 

(McDonald et al., 2018; R. U. Shah et al., 2020). These oxygenated species are not included as SOA precursors in most 

models, and their chemistry is needed to improve predictions of SOA mass. 

 75 

In this work, we introduce a chemical mechanism to represent SOA formation from VCPs. Specifically, the potential of both 

oxygenated and nonoxygenated IVOCs to form SOA is developed and evaluated. We utilize a new VCP emissions inventory 

known as VCPy (Seltzer et al., 2021) to represent organic emissions from VCPs and to parameterize model species behavior 

in the chemical mechanism. The chemistry and emissions inventory are implemented in the Community Multiscale Air 

Quality (CMAQ) model version 5.3.2 to simulate air quality during the CalNex campaign in California in 2010. The model 80 
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predictions are compared to measurements made in Pasadena during CalNex and the speciation of predicted SOA is 

examined. 

 

2 Methods 

 85 

2.1 VCPy emissions inventory implementation 

 

VCPy is a modeling framework that estimates reactive organic carbon emissions from VCPs (Seltzer et al., 2021). Within 

this framework, the complete VCP sector is disaggregated into several product use categories (PUCs; e.g. cleaning products, 

personal care products, adhesives and sealants, paints and coatings). U.S. nationwide usage of each PUC is estimated, and 90 

survey data are then used to quantify the mass fraction of organic, inorganic, and water proportions, as well as speciate the 

organic fraction. Physiochemical properties of each organic component are used to estimate the characteristic evaporation 

timescale, which is then compared to an assigned use timescale to determine whether a compound is retained or evaporated 

from each PUC. In the initial implementation of VCPy (version 1.0), which is representative of 2016 conditions, the 

predicted nationwide and Los Angeles County VCP emission rates were 9.5 kg person-1 year-1 and 8.2 kg person-1 year-1, 95 

respectively. These emission rates are consistent with the low end of values seen in a previous study that used a top-down 

approach to estimate VCP emissions (Qin et al., 2021). In our work, product use is based on data from 2010 with 

composition specified using data from the early 2000s to overlap with the CalNex campaign.  

 

Since the speciation of organic emissions from VCPy is explicit, the underlying chemical and physical properties of 100 

emissions are output from the framework. These properties, many of which are relevant to atmospheric oxidation and 

subsequent SOA formation, include the oxidation rate with the hydroxyl radical (kOH), molecular weight (MW), volatility 

(C*), and oxygen-to-carbon ratio (O:C). SOA mass yields, which are defined as the mass of SOA formed per mass of ROC 

precursor reacted, were assigned based on compound-specific structure and volatility (Seltzer et al., 2021). 

 105 

A key step in implementing this inventory into CMAQ is ensuring that all compounds predicted to be emitted by VCPy are 

mapped to either an existing or a new model surrogate. Emissions of low-volatility organic vapors (C* < 106.5 g m-3) from 

all sources are prime SOA precursors but traditionally discarded from the gas-phase chemical mechanism used in many 

CTMs (e.g. represented as nonvolatile (NVOL), nonreactive (NROG), or unspecified IVOC species that are not used in the 

chemical mechanism of CMAQ; Carter, 2010). As a result, these species do not participate in atmospheric chemistry and 110 

thus do not impact radical concentrations or SOA mass. In addition, oxygenated compounds are not currently included as 

SOA precursors in many mechanisms because of the historic focus on SOA formation from nonoxygenated vehicle exhaust 

and traditional VOCs like single-ring aromatics and biogenic hydrocarbons. The work of Qin et al. (2021) specifically 

identifies this loss of emitted reactive carbon mass as a reason for underestimated SOA from the personal care sector in the 
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CMAQ model. To account for the SOA potential of this previously neglected organic mass, all compounds currently mapped 115 

to NROG, NVOL, and IVOC are reviewed, with most of this mass routed to one of three newly added categories of model 

surrogates: siloxanes (SILOX), oxygenated IVOCs (SOAOXY), and nonoxygenated IVOCs (IVOCP3, IVOCP4, IVOCP5, 

IVOCP6, IVOCP5ARO, and IVOCP6ARO). The updated mechanism (with SOA pathways described in Section 2.2) with 

the newly implemented speciation mapping is henceforth described as SAPRC07TIC_AE7I_VCP and the complete list of 

assignment rules is provided in the SI Methods. In summary: 120 

 

(1) All silicon-containing species (including siloxanes and silanes) are assigned to SILOX. 

(2) Species assigned to low-volatility, inactive species (i.e. NVOL, NROG, or IVOC) whose ozone and SOA formation 

are not otherwise captured in existing gas-phase surrogates are assigned to the new IVOC surrogates (SOAOXY, 

IVOCP3/4/5/6/5ARO/6ARO) or an existing long alkane surrogate (SOAALK) according to their structure, O:C, 125 

C*, and SOA yield. 

(3) All species assigned to SOAOXY, IVOCP3/4/5/6/5ARO/6ARO, and SOAALK are also mapped to existing alkane 

surrogates based on kOH to participate in ozone chemistry. Siloxanes are not mapped to alkane surrogates because of 

their low kOH. Since these alkane species do not participate in the SOA module and the VCP surrogates do not affect 

ozone chemistry, this double-mapping does not double-count chemistry due to the lack of overlap between these 130 

parts of the gas- and aerosol-phase mechanisms. 

(4) Some compounds were manually reassigned depending on their SOA yield. 

(5) All other compounds retained their assignments to existing model surrogates. 

 

County-level VCPy emissions (Seltzer et al., 2021) were gridded at 4-km scale to fit the CalNex domain (Baker et al., 2015) 135 

using a variety of spatial surrogates. The spatial surrogates used depend on the category of VCP emissions being described: 

agricultural land is used as a proxy for all agricultural pesticide emissions, the density of oil and gas wells for the oil and gas 

solvent emissions, and population for all remaining VCP sources. While some categories of VCP emissions could feature 

more refined spatial surrogate proxies, the uncertainty associated with spatial allocation of sources may be lower than 

uncertainty in individual source strength. More specifically, if an entire VCP category could be matched to a single 140 

surrogate, allocation methods would still assume there is no variation in the strength of individuals within the population of 

that surrogate (Y. Li et al., 2021). 

 

All VCP emissions feature a sinusoidal diurnal profile with a peak at noon, with no application of day-of-week or seasonal 

profiles. Since the simulation period used in this study is a single month, no seasonal changes would be observable over this 145 

time frame and previous work suggests little seasonal variability in VCP emissions (Gkatzelis et al., 2021). Other emission 

sectors (e.g. mobile sources, agriculture) are adjusted for seasonal impacts based on meteorological conditions and known 
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activity data. The seasonal effects applied to other sectors of emissions, e.g. mobile source emissions, are a function of the 

meteorological conditions.  

 150 

2.2 Parameterizing SOA formation from VCPs 

 

To better represent the atmospheric chemistry of VCPs, SOA formation is added for the three new categories of emissions 

(siloxanes, oxygenated IVOCs, and nonoxygenated IVOCs) in the SAPRC07TIC_AE7I_VCP chemical mechanism within 

CMAQ (Table 1). 155 

 

Cyclic volatile methylsiloxanes (cVMS), or siloxanes for short, are present in many personal care products, adhesives, and 

sealants. Collectively, siloxanes represent a large fraction of VCP emissions (Seltzer et al., 2021). 

Decamethylcyclopentasiloxane (D5-siloxane) is the most prevalent siloxane in urban atmospheres (D.-G. Wang et al., 2013) 

and laboratory studies have found D5-siloxane SOA yields ranging from 0% (Charan et al., 2021) to 50% (Janechek et al., 160 

2019). The explicit oxidation mechanism is unknown and the SOA yields of other siloxanes are not well understood 

(Coggon et al., 2018). Here, siloxanes are treated separately from other oxygenated VCP species due to their anomalously 

low OH oxidation rate (Table 1). The mechanism of SOA formation used here utilizes an existing two-product model from 

Janechek et al. (2019) that was parameterized using oxidation flow reactor (OFR) experiments and photooxidation chamber 

data from Wu & Johnston (2017). In this implementation, the OH oxidation rate constant for D5-siloxane matches the rate 165 

reported in Janechek et al. (2017) and the hydroxyl radical is replenished after reaction.  

 

Few laboratory chamber studies have investigated the oxidation processes of other oxygenated gas-phase species (e.g. 

Charan et al., 2020; L. Li & Cocker, 2018), so little experimental data exist about the SOA yields or oxidation products of 

oxygenated SOA precursors. Additionally, many models that predict the products of oxidation reactions (e.g. SOM and 170 

VBS) have not been parameterized or evaluated using oxygenated precursors. Without these models and laboratory studies, 

little is known about the oxidation products of these precursors, which limits our ability to develop a detailed model of their 

SOA formation. Therefore, all non-siloxane oxygenated IVOC emissions are represented by a single surrogate (SOAOXY) 

that undergoes a one-step reaction with the hydroxyl radical to form a nonvolatile aerosol surrogate (AOIVOC). This simple 

mechanism reduces the reliance on many parameters that are not well-constrained. The MW, kOH, C*, and SOA yield of this 175 

surrogate are calculated as a mass-weighted average of the oxygenated IVOC emissions from VCPs in Los Angeles County 

which are generally consistent with what would be calculated using nationwide information. 

 

Nonoxygenated IVOC emissions are represented using the model described by Lu et al. (2020), which uses a VBS model 

and multigenerational aging scheme to represent the SOA from gasoline, diesel, and aircraft sources. Six surrogates are 180 

differentiated by structure (alkane vs. aromatic) and volatility, and each is assigned a four-product yield distribution, 
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generating SVOCs after one oxidation step. Many of the nonoxygenated IVOC species from mobile and VCP emission 

sources have similar structures (i.e. long and branched alkanes and aromatics), volatilities, and SOA yields (see Fig. S1), 

making the Lu et al. (2020) model a good representation of oxidation and SOA formation from nonoxygenated VCP IVOCs. 

 185 

Table 1. Properties of the VCP surrogates added to CMAQ version 5.3.2.  

 

 MW 

(g 

mol-1) 

kOH x 1011 

(cm3 

molec-1 

sec-1) 

i C* 

(g 

m-3) 

SOA mass 

yield 

(at 10 g 

m-3) 

Hvap  

(kJ  

mol-1) 

κorg H 

(M 

atm-1) 

OM/

OC 

SILOX 368.66a 0.155b - - - - - 3.87 x 102 f - 

SV/ASILOX1  416.66a - 0.14c 0.95c 0.13 131d 0.09e 2.97 x 106 f 3.49e 

SV/ASILOX2 384.66a - 0.82c 484c 0.017 101d 0.05e 7.99 x 104 f 3.22e 

SOAOXYg 170.95 2.54 - - - - - 2.85 x 103 f - 

AOIVOCJg 186.95 - - - 0.0628 - 0.09e - 1.73e 

IVOCP3h 296.6 2.65 h 103 0.43 52 - 2 x 108 - 

IVOCP4h 254.9 2.25 h 104 0.43 41 - 2 x 108 - 

IVOCP5h 219.4 1.89 h 105 0.35 30 - 2 x 108 - 

IVOCP6h 184.4 1.55 h 106 0.15 19 - 2 x 108 - 

IVOCP5AROh 197.3 7.56 h 105 0.36 30 - 2 x 108 - 

IVOCP6AROh 162.3 3.05 h 106 0.25 19 - 2 x 108 - 

aThe gas-phase siloxane (SILOX) MW is the average of the MW of all VCPy siloxane and silane species weighted by Los 

Angeles County emission rates. The MW of the higher-volatility siloxane products (SVSILOX2/ASILOX2J) is 

approximated as the sum of the MW of SILOX and one oxygen. The MW of the lower-volatility products 190 

(SVSILOX1/ASILOX1J) has an additional two oxygens to represent its significant decrease in volatility. 

bThe siloxane kOH is given in Janechek et al. (2017). 

cThe stoichiometric product yields (i) and C* of the siloxanes are given in Janechek et al. (2019). 

dEnthalpy of vaporization (Hvap) values for the siloxanes are estimated according to the method in Epstein et al. (2010). 

eAll OM/OC ratios and hygroscopicity parameters (κorg) are estimated using equations 5 and 12, respectively, in Pye et al. 195 

(2017). 
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fHenry’s Law constants (H) at 298.15 K are estimated using the surrogate-based method in Hodzic et al. (2014). 

gThe MW, kOH, C*, and SOA yield of SOAOXY and AOIVOCJ are calculated as a mass-weighted average of the 

oxygenated IVOC emissions from VCPs in Los Angeles County. Because AOIVOC is formed via a single reaction with a 

constant SOA yield, it is treated as nonvolatile and therefore is not assigned a C* or Hvap. 200 

hAll nonoxygenated IVOC surrogate properties – including four stoichiometric product yields (i) for each surrogate used in 

the multigenerational scheme – are described in Lu et al. (2020). 

 

2.3 CMAQ model implementation 

 205 

2.3.1 CalNex model configuration 

 

The updated chemical mechanism and VCPy-derived emissions were implemented in CMAQ version 5.3.2 (US EPA Office 

of Research and Development, 2020). CMAQ version 5.3 and the subsequent minor releases are documented in Appel et al. 

(2021). The model was used to simulate air quality during the CalNex campaign from May 15 to June 15, 2010, with an 210 

additional 14-day spin-up period. Outside the VCP updates, the model configuration matches the implementation used in Qin 

et al. (2021) and Lu et al. (2020). The model domain has 4-km x 4-km horizontal resolution (325 x 225 grid cells) covering 

California and Nevada with 36 vertical levels reaching 50 mbar. Meteorological inputs are derived from the Weather 

Research and Forecasting (WRF) Advanced Research WRF core Model version 3.8.1 (Skamarock et al., 2008). Gas-phase 

chemistry is represented using SAPRC07TIC (Pye et al., 2013; Xie et al., 2013) with the addition of the VCP chemical 215 

mechanism summarized in Table 1. Aerosol-phase chemistry is simulated using an extended version of the AERO7 

mechanism, depicted in Figure 1, including all AERO7 reactions plus those of the new VCP mechanism (boxed in red) and 

mobile IVOCs (boxed in red in the lower left) that participate in the multigenerational aging shown in the orange boxes (Lu 

et al., 2020). This diagram also includes a representation of the aqueous-phase cloud chemistry and removal used in the 

Asymmetric Convection Model (ACM) version 2 module (Binkowski & Roselle, 2003), which has been updated to include 220 

wet deposition properties for the new aerosol surrogates (Table 1). 

 

All non-VCP anthropogenic emissions are based on the 2011 National Emissions Inventory (NEI) version 2 (US EPA, 

2015). VCP emissions in the NEI are removed and replaced with VCPy predicted emissions using the Detailed Emissions 

Scaling, Isolation, and Diagnostic (DESID) module (Murphy et al., 2021). Mobile NOx emissions were reduced by 25% in 225 

all simulations to better match observational data from the CalNex campaign (Qin et al., 2021). Mobile IVOC emissions and 

the semivolatile treatment of mobile POA were treated according to the methods described in Lu et al. (2020). The IVOCs 

are assigned to the appropriate IVOCP3/4/5/6/5ARO/6ARO surrogates that are also used to treat nonoxygenated IVOCs 

from VCPs. Wind-blown dust emissions are neglected in this study. Biogenic emissions are calculated online using the 

Biogenic Emission Inventory System (BEIS) version 3.6.1 (Bash et al., 2016) as are sea spray aerosol emissions. 230 
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Figure 1. Treatment of OA chemistry in the CMAQv5.3.2+VCP model. The thick black box surrounds all aerosol-phase species. 

All smaller black boxes depict species undergoing gas-phase oxidation from VOCs to semivolatile or nonvolatile SOA species. 

Orange depicts the VBS model for S/IVOCs. Red depicts particle-phase accretion reactions while purple depicts particle-phase 

hydrolysis reactions. Green represents heterogeneous processes. Blue shows cloud-processed aerosol and yellow shows aerosol 235 
water associated with the organic phase. Gray boxes are nonvolatile primary organic aerosol (POA) species. Double-sided arrows 

represent reversible processes and one-sided arrows represent irreversible processes. Dashed lines represent processes that are 

dependent on relative humidity. The diagram includes the AERO7 mechanism plus the three VCP-forming pathways (boxed in 

red). See AE7I Species Table (2016/2021) for species descriptions. 

 240 

2.3.2 Simulation cases 

 

Three simulations were evaluated against the observations collected during the CalNex campaign. A “zero VCP” case 

removes all VCP emissions. The “CMAQv5.3.2” case is a standard CMAQ simulation with base emissions (i.e. VCP 

emissions from the NEI) and base chemistry (i.e. no new VCP chemistry). Finally, the “CMAQv5.3.2+VCP” case adds both 245 

the VCP chemistry described above (i.e. SAPRC07TIC_AE7I_VCP) and replaces all NEI VCP emissions with VCPy-

derived VCP emissions. Comparisons between the “zero VCP” case and the “CMAQv5.3.2+VCP” case illustrate the 

complete impact of VCPy emissions on modeled SOA. In contrast, comparisons between the “CMAQv5.3.2” case and the 

“CMAQv5.3.2+VCP” case illustrate the impact of the new representation of VCP emissions and chemistry against the 

current status of VCPs in CMAQ. Results from the CMAQv5.3.2 case are presented primarily in the SI. 250 
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2.3.3 Comparison with observations 

 

Observational data are provided by a suite of instruments deployed during the 2010 CalNex campaign in Pasadena. There 

were two data collection sites in the CalNex campaign – Pasadena and Bakersfield – and model predictions are compared to 255 

measurements made at the Pasadena site, which is located in the Los Angeles Basin approximately 18 km downwind of the 

urban core (Ryerson et al., 2013). PM1 (fine particulate matter with diameter < 1 m) OA data were obtained with an aerosol 

mass spectrometer (AMS) and have been analyzed via positive matrix factorization (PMF) to determine its composition 

(Hayes et al., 2013). Formaldehyde (HCHO) data are provided in Warneke et al. (2011) and carbon monoxide (CO) data are 

available from Santoni et al. (2014). Ozone data throughout California were obtained from the EPA AQS monitoring 260 

network for 178 sites operating during the simulation period (US EPA, 2013). Hourly ozone concentrations were used to 

calculate daily maximum 8-hour average (MDA8) ozone concentrations. 

 

3 Results & Discussion 

 265 

3.1 VCP emissions and implications for SOA 

 

VCP emissions were split almost equally between species that do and do not form SOA. The SAPRC07TIC_AE7I_VCP 

speciation mapping (Figure 2) indicates 56.4% (4.8 x 107 kg year-1) of Los Angeles County VCP emitted mass does not form 

SOA. This mass includes small species commonly used as solvents, such as ethanol, acetone, and small alkanes. The 270 

remaining 43.6% (3.7 x 107 kg year-1) of Los Angeles County emissions are assigned to model surrogates that form SOA. 

3.5% of the total emissions are assigned to siloxanes, 7.8% to oxygenated IVOCs, 11.8% to nonoxygenated IVOCs, and 

20.4% to traditional SOA precursors, such as long alkanes, toluene, and other aromatics. The volatility and SOA yields of 

species in each category are summarized in Fig. S1. 

 275 

Figure 2 indicates that in traditional model processing, precursors to SOA are systematically discarded from chemistry 

calculations. As described in Section 2.1, there are low-volatility emissions (i.e. NROG, NVOL, and IVOC) that do not 

participate in SOA or radical chemistry in traditional SAPRC07TIC_AE7I which is a key issue in representing SOA mass. 

The inner ring of Figure 2 depicts the fraction of each category that was originally assigned to inactive species (NROG, 

NVOL, and IVOC; hatched) versus other existing surrogates (solid). 2.6 x 107 kg year-1 (30.7%) of the total VCP emissions 280 

were originally assigned to these surrogates and did not participate in any atmospheric chemistry processes. Using the new 

speciation and mechanism, 1.8 x 107 kg year-1 (21.2% of total VCP emissions) were reassigned to surrogates that form SOA 

in the model (hatched inner ring: red, blue, orange, and purple). The remaining 8.0 x 106 kg year-1 (9.4% of total VCP 

emissions; inner ring hatched green) is comprised of species with SOA yields of zero and were not reassigned to SOA-

forming surrogates. 285 
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Figure 2. Percentage of the VCP emissions assigned to each category of CMAQ surrogates using the SAPRC07TIC_AE7I_VCP 

speciation profiles. The total rate of VCP emissions in Los Angeles County is 8.3 x 107 kg yr-1. The outer ring depicts the 

percentage of total VCPy-derived emissions assigned to each of the three new VCP categories (siloxanes in red, oxygenated IVOCs 290 
in blue, and nonoxygenated IVOCs in orange), the traditional SOA precursors described by existing model surrogates (purple), 

and existing surrogates that do not form SOA (green). The inner ring gives an indication of the original assignments of each of the 

outer ring categories. Hatching indicates emissions originally assigned to model surrogates that do not participate in model 

chemistry: IVOC, NVOL, and NROG. Solid colors represent other surrogate assignments. 

Averaged over the duration of the CalNex campaign, VCPs are predicted to be a larger source of IVOCs than mobile 295 

sources. Across mobile and VCP sources during CalNex, CMAQ predicts 6.4 g m-3 of the gas-phase IVOC mass is 

nonoxygenated and 2.6 g m-3 of the IVOC mass is oxygenated (Fig. S2). The observed campaign-average total IVOC 

concentration was 10.5 g m-3 (Zhao et al., 2014), with 6.3 g m-3 attributed to hydrocarbon-like IVOCs and 4.2 g m-3 

attributed to oxygenated IVOCs. However, this observed estimate of oxygenated IVOCs is conservative (lower bound) based 

on the experimental method employed by Zhao et al. (2014). Thus, the predicted nonoxygenated IVOC mass, which includes 300 

contributions from both mobile and VCP sources, reproduces observations with high fidelity. CMAQ, which only considers 

IVOCs from VCP and mobile sectors, underpredicts the mass of oxygenated IVOCs by 38%, suggesting additional missing 

products of oxidation or emissions. 

 

The new SOA systems combined with traditional SOA precursors in CMAQ resulted in an effective SOA yield for the VCP 305 

sector – defined as the emission-weighted average of the individual species’ mass-based SOA yields – of 5.6% for Los 

Angeles County. This Los Angeles County yield is in good agreement with the work of Qin et al. (2021), that found a 5% 

yield led to SOA predictions consistent with ambient observational constraints. The U.S. effective VCP SOA yield (5.3%) is 

only slightly lower than the yield expected for Los Angeles, due to differences stemming from the variability in the 

composition of VCP emissions nationwide versus in Los Angeles. 310 

 

3.2 CMAQ results 
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3.2.1 SOA 

 315 

Modeled PM1 SOA increased considerably in response to the newly implemented VCP emissions and chemistry, bringing 

model predictions into closer agreement with observations. Daily maximum PM1 SOA concentrations increased from 1.4 g 

m-3 (-79% mean bias) in the zero VCP case to 2.8 g m-3 (-58% mean bias) in the CMAQv5.3.2+VCP case, compared to the 

observed peak value of 6.6 g m-3 (Figure 3a). The diurnal distributions resulted from photochemistry and the sinusoidal 

distribution of VCP emissions that peak at 12:00 local time. Modeled SOA concentrations improved for all mass loadings 320 

and all hours of the day, with the slope of modeled versus observed concentrations increasing from 0.23 in the zero VCP 

case to 0.43 in the CMAQv5.3.2+VCP case (Figure 4a). Results for the CMAQv5.3.2 case are given in Figs. S3 and S4. 

Modeled PM2.5 SOA displayed similar behavior as PM1 SOA; i.e. the organic fraction and secondary organic fraction of 

PM2.5 was only marginally smaller than the corresponding fractions of PM1 and followed the same diurnal pattern. 

 325 

 

Figure 3. a) Average hourly concentrations of background-corrected PM1 SOA observed and simulated by the zero VCP and 

CMAQv5.3.2+VCP modeling cases May 15-June 15. Box and whiskers show all hourly concentrations observed by AMS at the 

CalNex site. A constant background value was removed from all observed concentrations according to the method in Hayes et al. 

(2015). The background value of each simulation was determined by averaging the lower 50% of hourly concentrations from 00:00 330 
LT to 04:00 LT and subtracting that from each curve. b) Average hourly concentration of total (not size-resolved) SOA for the two 

simulation cases and their difference (CMAQv5.3.2+VCP – zero VCP). c) Difference in hourly concentrations of total SOA by 

category. 

The difference between hourly averaged total SOA concentrations in the zero VCP and CMAQv5.3.2+VCP case are shown 

in Figure 3b and the contributions to that difference from categories of SOA surrogates are shown in Figure 3c. Of the three 335 

new categories of VCP emissions, nonoxygenated IVOC precursors formed the most SOA in CMAQ. The increased SOA 

from the nonoxygenated IVOC VCP precursors reached a peak concentration of 1.14 g m-3, equal to 69% of the total 

noontime difference. This can be explained by the high SOA yields of the individual species (Fig. S1) and the model 

surrogates. SOA from oxygenated IVOC VCP precursors reached a peak concentration of 0.11 g m-3 (6.7% of the SOA 

difference). While oxygenated IVOC emissions were similar in abundance to nonoxygenated IVOC emissions (Figure 2), 340 

these species lead to less SOA formation due to their lower SOA yields (Fig. S1). Higher degrees of oxygenation tend to 
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promote fragmentation upon reaction with OH (Jimenez et al., 2009), producing smaller molecules with higher volatilities 

and lower potential to form SOA. Siloxanes similarly formed very little SOA, reaching a maximum of 21 ng m-3 (1.3% of 

the SOA difference) at noon. Despite having nonnegligible SOA yields (Fig. S1), siloxanes react with OH on long time 

scales (Table 1). As such, this results in low localized SOA mass, which is consistent with other modeling and laboratory 345 

studies that have predicted siloxanes to form SOA on the order of ng m-3 or less (Charan et al., 2021; Milani et al., 2021; 

Janechek et al., 2017). 

 

Despite traditional species accounting for the greatest fraction of VCP SOA precursor emissions that lead to SOA formation 

(Figure 2), they contributed only 23% (0.39 g m-3) of the increased noontime SOA in the CMAQv5.3.2+VCP case. These 350 

traditional SOA precursors form SOA less efficiently than the IVOC surrogates (Fig. S1), so they result in less SOA 

formation than IVOCs despite higher emissions. 

 

 

Figure 4. Modeled concentrations predicted by CMAQ zero VCP case (green) and CMAQv5.3.2+VCP case (blue) vs. observations 355 
from the CalNex Pasadena ground site. a) Hourly PM1 SOA. b) Hourly formaldehyde (HCHO). c) MDA8 O3. Background values 

were not removed from any panels. 

The SOA from VCP IVOCs reached a daily maximum of 1.25 g m-3 on average at noon (Figure 3c). IVOCs from mobile 

sources contributed an additional 1.1 g m-3 at noon (Lu et al., 2020). Therefore this updated CMAQ model predicted a total 

IVOC-derived SOA concentration of 2.35 g m-3, equivalent to 35% of the total observed above-background PM1 SOA 360 

concentration (6.6 g m-3). Previous work stated that 40-85% of above-background SOA concentrations in Pasadena are 

attributable to S/IVOCs (Hayes et al., 2015), suggesting that additional processes are still needed in the model. This will be 

discussed further in Section 3.3. 

 

3.2.2 Formaldehyde 365 
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Formaldehyde is one of the most abundant VOCs in the atmosphere and observations of this compound can serve many 

purposes. Biomass burning, vehicles, and other urban sources emit formaldehyde, and because of its short lifetime (~hours), 

it can serve as a proxy for local organic emissions. It is also formed in the atmosphere when VOCs undergo radical reactions, 

oxidize, and fragment, so it serves as an indicator for SOA chemistry since it is formed by many of the same reactions that 370 

also lead to SOA formation (Seinfeld & Pandis, 2016). In addition, it is depleted by photolysis and is an important source of 

radical initiation reactions (Griffith et al., 2016). Formaldehyde can be retrieved directly by satellites (Levelt et al., 2018), 

which can be used to validate ground data, evaluate model predictions, and predict OA concentrations remotely (Liao et al., 

2019). For all of these reasons, formaldehyde is a useful indicator of VOC chemistry in a model. 

 375 

Predicted formaldehyde concentrations improved in response to the new VCP emissions and chemistry, indicating that 

model updates improve the representation of VOC chemistry beyond SOA in the model. Similar to predicted SOA, 

formaldehyde concentrations increased at all times, with the ratio of modeled to observed values increasing from 0.58 in the 

zero VCP case to 0.75 in the CMAQv5.3.2+VCP case (Figure 4b). The diurnal profile of hourly averaged formaldehyde 

concentrations is given in Fig. S3. The increase in formaldehyde was predominantly due to the increased magnitude of VCP 380 

emissions. This work focused primarily on improving the representation of SOA from VCPs, so radical chemistry for the 

new SOA precursors was treated using existing alkane-like behavior (surrogates ALK1/2/3/4/5). With a more detailed 

representation of VCP radical chemistry, it is expected that predicted formaldehyde concentrations will improve further. 

 

3.2.3 Ozone 385 

 

The bias in predicted ozone concentrations was also reduced by including VCP chemistry. The ratio of modeled to observed 

concentrations increased from 0.72 in the zero VCP case to 0.95 in the CMAQv5.3.2+VCP case (Figure 4c). Improved 

ozone is also seen for all operational AQS sites in the California modeling domain, with the modeled to observed ratio 

increasing from 0.63 in the zero VCP case to 0.70 in the CMAQv5.3.2+VCP case (Fig. S5). The diurnal profile of hourly 390 

averaged ozone concentrations is given in Fig. S3. As stated in Section 3.2.2, this study focused on VCP behavior in relation 

to SOA formation and used existing model species to capture ozone formation. Future work focusing on the ozone chemistry 

of VCPs could change the magnitude and diurnal profile of predicted ozone. 

 

Assuming ozone can serve as a proxy for oxidation rates, the increase in ozone concentration relative to the increase in SOA 395 

concentration provides information about the proportional impact of oxidant level versus combined emissions and chemistry 

on total SOA mass. Average noontime total SOA mass increased from 1.96 g m-3 in the zero VCP case to 3.62 g m-3 in the 

CMAQv5.3.2+VCP case (Figure 3b), an increase of 84.7%. The average noontime ozone concentration increased from 43.0 

ppb in the zero VCP case to 49.2 ppb in the CMAQv5.3.2+VCP case (Fig. S3c), an increase of 14.4%. This suggests that the 

emissions and chemistry updates were approximately 5 times [ (84.7% - 14.4%) / 14.4%] more effective than enhanced 400 

https://doi.org/10.5194/acp-2021-547
Preprint. Discussion started: 1 July 2021
c© Author(s) 2021. CC BY 4.0 License.



15 

 

oxidant levels from VCPs in increasing SOA. Additionally, we note that PM1 SOA increased most in the 

CMAQv5.3.2+VCP case, with little increase in the CMAQv5.3.2 case compared to the zero VCP case (Fig. S3a). In contrast, 

ozone increased linearly between the three simulation cases (Fig. S3c). The oxidant burden increased noticeably in the 

CMAQv5.3.2 case but did not equate to a large increase in PM1 SOA, supporting the idea that the oxidant level alone does 

not have a large influence on enhancing SOA if the relevant precursor pathways are not implemented. 405 

 

3.3 Features of remaining model bias 

 

The residual PM1 SOA bias in Pasadena is well-correlated with ambient temperature (Figure 5a). PM1 SOA bias is defined 

as modeled hourly concentrations minus observed hourly concentrations. At cooler temperatures in the overnight hours, bias 410 

is low and fluctuates around zero. However, as temperature increases towards midday and SOA concentrations increase, the 

bias becomes more negative, indicating greater model underprediction.  

 

The correlation between SOA bias and temperature is likely caused in part by the inclusion and representation of S/IVOCs 

emissions and their chemistry in the model. Previous work demonstrated that observed OA in Los Angeles is positively 415 

correlated with temperature, and declining OA concentrations have been due largely to reductions of temperature-

independent OA. Because this corresponds to a decline in anthropogenic emissions, they suggest that anthropogenically-

derived OA is largely temperature-independent while biogenically-derived OA is largely temperature-dependent 

(Nussbaumer & Cohen, 2021). Our results indicate that OA concentrations are positively correlated with temperature, 

consistent with the observed Los Angeles OA. The correlation is driven by the larger, secondary portion of OA, rather than 420 

POA (Fig. S7). However, the improvement to predicted SOA between simulation cases was seen unequally at different 

temperatures, as indicated by the larger reduction in absolute model bias at higher temperatures (Figure 5a). This suggests 

that the SOA derived from VCP species have a temperature-dependent response, in addition to the biogenic emissions cited 

in Nussbaumer & Cohen (2021). In particular, because nonoxygenated IVOCs were the dominant source of increased SOA 

predicted by the CMAQv5.3.2+VCP simulation, this work suggests that S/IVOCs are an important source of temperature-425 

dependent SOA in Los Angeles.  

 

Because S/IVOCs have been shown to be a major constituent of modeled SOA and contribute to the correlation between 

SOA bias and temperature, other sources of S/IVOCs emissions may account for some of the remaining residual SOA bias in 

the model. For example, asphalt emissions are proposed to contribute 8-30% of total S/IVOC emissions in the South Coast 430 

Air Basin in Southern California and have SOA mass yields exceeding 10% (Khare et al., 2020). Their potential to form 

SOA is very large, and because asphalt emissions are highly temperature-dependent, the SOA increase would be seen largely 

during midday resulting in an improvement of high-temperature SOA bias. In addition, the underprediction of oxygenated 
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gas-phase IVOCs (Section 3.1) suggests that additional sources of oxygenated IVOC precursors may be missing from the 

complete inventory. 435 

 

 

Figure 5. Bias (modeled - observed) of hourly concentrations vs. modeled temperature for the zero VCP case (green) and 

CMAQv5.3.2+VCP case (blue). Hourly concentrations are binned into five temperature ranges of 5C each and the data in each 

bin is represented by a box-and-whisker plot. The horizontal midline depicts the median of the data, the edges of the box extend 440 
from the lower to upper quartile of the data, and the whiskers extend from the minimum to the maximum of the data. a) PM1 SOA 

bias (g m-3). b) PM1 POA bias (g m-3). c) Formaldehyde (HCHO) bias (ppb). d) CO bias (ppb). 

Formaldehyde, CO, and POA are often used to understand the atmospheric evolution of SOA because they are products of 

the same anthropogenic activity and/or VOC oxidation chemistry that forms SOA. As such, they can be used to better 

understand the remaining sources of error in the model. POA is formed via combustion from vehicles, industrial processes, 445 

cooking, and biomass burning (Jathar et al., 2014; Huffman et al., 2009). CO and formaldehyde are emitted from many 

processes and formed as products of atmospheric VOC oxidation (Seinfeld & Pandis, 2016). These species are often used to 

understand the effect of dilution on SOA (Hayes et al., 2013). Dilution is caused both by atmospheric transport away from 

emission sources, as well as the change in planetary boundary layer (PBL) height over the diurnal cycle. VCPs do not emit 

POA, CO, or formaldehyde, so any changes observed in their simulated concentrations were caused by chemical and 450 

physical processing in the existing model. 
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The POA bias did not express the same temperature dependence as SOA. Since VCPs do not emit POA and all other 

emission sources were consistent between simulation cases, the slight increase in POA concentrations (Figs. 5 and S7) is due 

to increased partitioning into the particle-phase resulting from higher total OA mass loadings. The POA bias can be 455 

exclusively attributed to errors in combustion source emissions inventories and meteorological effects. The combustion 

source inventories also include emissions of gaseous SOA precursors, which may be incorrectly modeled even if the POA 

emissions are accurate, especially for cooking and biomass burning sources. While the POA bias does decrease with 

increasing temperature, it is positive at all temperatures and does not have larger underpredictions at higher temperatures 

(Figure 5b). Thus POA is not affected in the same way in the model by the processes causing the temperature-dependence of 460 

SOA bias. Due to the inconsistency between POA and SOA behavior, errors influencing the emission and transport of POA 

can likely not be used to describe the temperature dependence of SOA bias. The POA bias also does not provide information 

about the error in vapor emissions from combustion sources – including S/IVOCs – and their temperature-dependence, and 

improving combustion emissions inventories may help to close the model-observation gap for SOA. 

 465 

CO is often used to account for the effects of dilution by scaling SOA to CO enhancement (∆CO = CO - CObackground). 

Negligible changes in the CO concentration were found between simulation cases considered here (Fig. S3) and the model 

CO bias is uncorrelated with temperature (Figure 5d). The consistency of predicted CO concentration between cases implies 

that CO is not affected by the emissions changes to the VCP sector and thus cannot separate SOA formation efficiency from 

lack of emitted precursors. CO enhancement serves as an effective indicator and correction factor for mobile source 470 

emissions in urban areas (e.g. Hayes et al., 2013; Ensberg et al., 2014; Woody et al., 2016), but this work indicates that CO is 

not an effective tracer for distinguishing VCPs from other sources.  

 

Another potential factor that could influence the temperature-dependence of SOA bias is modeled PBL height. Previous 

studies that used the same modeled meteorological data as this study (Lu et al., 2020) showed that the modeled PBL height 475 

in Pasadena tends to be overestimated during midday and underestimated overnight compared to ceilometer data, which 

could result in a dilution effect matching the temperature dependence seen in Figure 5a. However, the predicted CO bias 

does not depend on temperature, which implies that modeled PBL height is not an important driver of the SOA bias 

temperature-dependence. 

 480 

In contrast to POA and CO, the formaldehyde bias demonstrated the same trend with temperature as SOA (Figure 5c). This 

suggests that formaldehyde is affected by emissions, chemistry, and dilution changes similarly to SOA. This is supported by 

the stronger correlation seen between SOA and formaldehyde compared to the correlation between SOA and POA or CO 

(Fig. S8). As stated above, the behavior of POA and CO bias suggest that errors in combustion emissions and PBL height 

cannot fully describe the temperature-dependence of SOA bias, and POA and CO are better indicators of mobile and 485 
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industrial sources. Formaldehyde may instead serve as a better indicator of SOA production in urban areas where VCPs are 

important atmospheric constituents. This may be particularly true for SOA formed from S/IVOCs, which we have shown to 

be a dominant source of SOA in Los Angeles. Therefore, formaldehyde may provide more information about the errors in 

modeling SOA formation. The VCP inventory includes near-zero emissions of formaldehyde, but formaldehyde is emitted 

from wooden furniture and emission rates increase with temperature (Y. Wang et al., 2021). This may account for some of 490 

the temperature-dependence of formaldehyde bias, but likely not the entirety since the VCP emissions inventory has been 

evaluated with select ambient VOC measurements with low error (Seltzer et al., 2021). Because formaldehyde is a major 

product of VOC oxidation, the temperature-dependence of both SOA and formaldehyde may suggest that additional missing 

chemistry may be causing some of the error. Chemical processes that have not been included in the mechanism include 

autooxidation (Crounse et al., 2013), detailed chemistry of oxygenated precursors, and formaldehyde potentially formed 495 

from the fragmentation of S/IVOC precursors to SOA. Future work must investigate the importance of these factors and 

tracking the response of formaldehyde to these changes could provide insight. As mobile-source emissions decline and VCP 

emissions become the dominant source of aerosol in urban areas, formaldehyde should be considered an important indicator 

for SOA production from VCPs. 

 500 

4 Conclusions and future work 

 

We have shown that VCPs are a major source of SOA in urban atmospheres by introducing updated emissions and VCP-

relevant chemistry into CMAQ that better represents SOA precursors emitted from these sources. This includes three new 

categories of emissions: siloxanes, oxygenated IVOCs, and nonoxygenated IVOCs. VCP emissions from the VCPy 505 

framework (Seltzer et al., 2021) were used to parameterize the new chemistry, and the mapping of VCP emitted species to 

model surrogates was reviewed and updated based on species structure, volatility, and estimated SOA yield. 

 

The new model chemistry and emissions inventory doubles the predicted SOA concentrations above background levels, 

increasing the average daily maximum PM1 SOA concentration by 1.4 g m-3, equating to a 21% decrease in the absolute 510 

mean bias. Most of the increased SOA mass was formed from nonoxygenated IVOC VCP precursors, followed by SOA 

formed from traditional VOC precursors and oxygenated IVOC precursors, with little SOA formed from siloxanes. 

Improvements were additionally seen in simulated formaldehyde and ozone concentrations. 

 

Future work should consider how VCP emissions have evolved over time. VCPy version 1.0 requires information about 515 

VCP product composition and usage patterns from broad sources, including product surveys, economic statistics, and 

population distributions. These metrics change over time and will affect both the speciation and emission rates of organic 

compounds from VCPs. Diurnal and seasonal patterns of VCP emissions should also be updated to reflect more recent 

observations (Gkatzelis et al., 2021).  
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 520 

The remaining error in VCP-derived SOA predictions may reflect our lack of understanding about the oxidation pathways of 

low-volatility and/or oxygenated species. More information is needed about the structure, volatility, and reactivity of the 

products of atmospheric oxidation reactions, plus the impacts of wall loss and NOx concentrations on SOA yields from 

experiments, so that models and parameterizations like the VBS can be developed. As this data become available, models 

can be improved to represent SOA formation from oxygenated precursors and S/IVOCs emitted from VCPs. In addition, the 525 

correlation between SOA concentration bias and temperature suggests residual model error is associated with missing 

sources of S/IVOC emissions, including emissions from asphalt (Khare et al., 2020), combustion sources, and other 

S/IVOCs that have large potential to form SOA. The formaldehyde bias demonstrates a similar relationship to temperature as 

SOA bias, implying that formaldehyde can serve as a representative tracer of VOC chemistry to investigate the formation of 

SOA from VCPs. Including S/IVOC emissions and their atmospheric chemistry will be important for future air quality 530 

models. 

 

Data Availability  

CalNex observations are publicly available at https://csl.noaa.gov/groups/csl7/measurements/2010calnex/. The full VCPy 

dataset is available by downloading VCPyv1.0 at https://doi.org/10.23719/1520157. The SAPRC07TIC_AE7I_VCP 535 

speciation profile, CMAQ chemical mechanism source code, and CMAQ output will be posted on data.gov upon final 

publication.  
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